高専ドリル_基礎数学 高専数学 ドリルと演習シリーズ 基礎数学 35.集合の要素の個数 p.70 ドリル no.35 問題 35.1 全体集合を \( U = \qty{ x \mid x \textsf{は} -4 \leqq x \leqq 6 \ \textsf{を満たす整数} } \) とし、 \( U \) の部分集... 2024.07.24 高専ドリル_基礎数学
高専ドリル_基礎数学 高専数学 ドリルと演習シリーズ 基礎数学 34.ド・モルガンの法則 p.68 ドリル no.34 ド・モルガンの法則 \( \displaystyle \overline{ A \cap B } = \overline{A} \cup \overline{B} \) \( \displaystyle \... 2024.07.23 高専ドリル_基礎数学
高専ドリル_基礎数学 高専数学 ドリルと演習シリーズ 基礎数学 33.集合 p.66 ドリル no.33 問題 33.1 次の2つの集合 \( A , \ B \) について、 \( A \cap B \) , \( A \cup B \) を求めよ。 (1) \( \displaystyle A = \qty{ ... 2024.07.19 高専ドリル_基礎数学
高専ドリル_基礎数学 高専数学 ドリルと演習シリーズ 基礎数学 32.連立不等式 p.64 ドリル no.32 問題 32.1 次の連立不等式を解け。 (1) \( \displaystyle \begin{eqnarray} \left\{ \begin{array}{l} 3x -2 \gt x +4 \\ x^2 ... 2024.07.18 高専ドリル_基礎数学
高専ドリル_基礎数学 高専数学 ドリルと演習シリーズ 基礎数学 31.3次不等式 p.62 ドリル no.31 問題 31.1 次の不等式を解け。 (1) \( \displaystyle x ( x +2 )( x -1 ) \gt 0 \) 【解答】 3次方程式 \( x ( x +2 )( x -1 ) = 0 \... 2024.07.16 高専ドリル_基礎数学
高専ドリル_基礎数学 高専数学 ドリルと演習シリーズ 基礎数学 30.2次不等式 p.60 ドリル no.30 問題 30.1 次の2次不等式を解け。 (1) \( \displaystyle x^2 -4x -12 > 0 \) 【解答】 2次方程式 \( x^2 -4x -12 = 0 \) を解くと \( \beg... 2024.07.15 高専ドリル_基礎数学
高専ドリル_基礎数学 高専数学 ドリルと演習シリーズ 基礎数学 29.1次不等式 p.58 ドリル no.29 不等号の読み方 「<」小なり (例) \( x \lt a \) 「 \( x \) 小なり \( a \) 」 意味「 \( x \) は \( a \) より小さい 」「 \( x \)... 2024.07.15 高専ドリル_基礎数学
高専ドリル_基礎数学 高専数学 ドリルと演習シリーズ 基礎数学 28.因数定理による因数分解 p.56 ドリル no.28 ※ 因数定理の計算は一例です 問題 28.1 次の3次式を因数分解せよ。 (1) \( x^3 +x^2 -10x +8 \) 【解答】 \( P(x) = x^3 +x^2 -10x +8 \) とおくと、 ... 2024.07.11 高専ドリル_基礎数学
高専ドリル_基礎数学 高専数学 ドリルと演習シリーズ 基礎数学 27.剰余の定理と因数定理 p.54 ドリル no.27 問題 27.1 整式 \( P(x) = x^3 -7x +6 \) を次の式で割ったときの余りを求めよ。 剰余の定理 整式 \( P(x) \) を \( x -\alpha \) で割ったときの余りは \(... 2024.07.09 高専ドリル_基礎数学
高専ドリル_基礎数学 高専数学 ドリルと演習シリーズ 基礎数学 26.恒等式と未定係数法 p.52 ドリル no.26 問題 26.1 次の等式を恒等式と方程式に分けよ。 恒等式と方程式 含まれている文字がどんな値でも成り立つ等式を 恒等式 、特別な値に限って成り立つ等式を 方程式 という。 (1) \( \qty( x +y ... 2024.07.09 高専ドリル_基礎数学